Math 3500 Modern Algebra I

Spring 2011

Material Covered


Class Date  Section(s) Covered Topics 
Jan. 10 Chapter 2 introduction to course, definition and basic examples of groups
Jan. 12 Chapter 2 and Chapter 0   basic properties of groups
Jan. 14 Chapter 0 basic properties of integers
Jan. 19 Chapter 0 basic properties of integers, equivalence relations
Jan. 21 Chapter 0 equivalence relations
Jan. 24 Chapter 0 equivalence relations, modular arithmetic
Jan. 28 Chapter 0 modular arithmetic
Jan. 31 Chapter 0 and Chapter 2 Z/nZ
Feb. 2 Chapter 0 and Chapter 2 U(n), induction, other examples of groups
Feb. 4 Chapter 3 order of a group, subgroups
Feb. 7 Chapter 1 dihedral groups
Feb. 9 Chapter 3 center and centralizers
Feb. 11 Chapter 4 cyclic groups
Feb. 14 Chapter 4 cyclic groups
Feb. 16 Chapter 4 cyclic groups
Feb. 18 Chapter 5 permutation groups
Feb. 21 Exam 1 Chapter 0 through Chapter 4
Feb. 23 Chapter 6 isomorphisms
Mar. 7 Chapter 5 permutation groups
Mar. 9 Chapter 8 direct products
Mar. 11 Chapter 6 isomorphisms
Mar. 14 Chapter 6 isomorphisms
Mar. 16 Chapter 6 isomorphisms
Mar. 18 Chapter 6 automorphisms
Mar. 21 Chapter 10 homomorphisms
Mar. 23 Chapter 10 and Chapter 7 Cayley's Theorem and cosets
Mar. 25 Chapter 7 cosets
Mar. 28 Chapter 7 Lagrange's Theorem
Mar. 30 Chapter 7 applications of Lagrange's Theorem
Apr. 1 Chapter 9 factor groups of abelian groups
Apr. 4 Exam 2 Chapter 5 through Chapter 8, Chapter 10
Apr. 6 Chapter 9 normal subgroups
Apr. 8 Chapter 9 factor groups
Apr. 11 Chapter 10 isomorphism theorems
Apr. 13 Chapter 9 and Chapter 12 internal direct products and introduction to rings
Apr. 15 Chapter 12 and Chapter 13 properties of rings and integral domains
Apr. 18 Chapter 14 ideals
Apr. 20 Chapter 16 polynomial rings
Apr. 26 Chapter 16 and Chapter 17 polynomial rings and factoring
Apr. 27 - introduction to my research
May. 4 Final Exam

Last Updated: April 13, 2011