B# means Bolker section #. Otherwise, sections are in Alaca and Williams
Class Date | Section(s) | Words |
Jan. 23 | Introduction | |
Jan. 25 | 1.1 | integral domain, divisor, unit, associates in an integral domain |
Jan. 27 | 1.2-1.3 | irreducibles and primes in an integral domain, ideal, introduction to Magma |
Jan. 30 | 1.4-1.5 | principal and proper ideal, principal ideal domain, maximal and prime ideals, |
Feb. 1 | 1.6, 2.1 | sum and product of ideals, Euclidean function, euclidean domain, φ(n) |
Feb. 3 | 2.2 | φ_m |
Feb. 6 | B14, B23, B25, B26 | Legendre symbol, binary quadratic form |
Feb. 8 | 1.4 | |
Feb. 10 | 1.4, 2.5 | |
Feb. 13 | 3.1 | ascending chain of ideals, terminating ascending chain, ascending chain condition, Noetherian domain, maximal condition |
Feb. 15 | 3.2, 3.3 | factorization domain, unique factorization domain |
Feb. 17 | 3.4 | R-action, R-module, submodule, finitely generated module, factor (quotient) module, module homomorphism |
Feb. 20 | 3.5 | Noetherian module |
Feb. 22 | 5.1 | algebraic number (4.1), minimal polynomial of an algebraic number over a field, degree of an algebraic number over a field |
Feb. 24 | 5.2, 5.5 | conjugates of an algebraic number over a field, simple extension, degree of an extension, cyclotomic field (5.5) |
Feb. 27 | 4.1 | element integal over a domain, domain integral over a subdomain |
Mar. 1 | 4.1, 4.2 | integral closure |
Mar. 3 | 5.3, 5.4, 5.6 | |
Mar. 6 | 5.6, B42-B44 | primitive pythaogrean triples |
Mar. 8 | B42-B43 | |
Mar. 10 | B.44, 6.1 | algebraic number field, ring of integers of an algebraic number field |
Mar. 13 | 6.2 | monomorphism, conjugate fields of an algebraic number |
Mar. 15 | symmetric polynomials, elementary symmetric polynomials | |
Mar. 17 | 6.3 | complete set of conjugates of α relative to K, field polynomial of α over K |
Apr. 3 | 6.4 | discriminant of n elements in an algebraic number field, D(α), properties of the determinant, discriminant of a polynomial |
Apr. 5 | 6.5 | basis of an ideal, integral basis of an algebraic number field, discriminant of an algebraic number field d(K) |
Apr. 7 | 7.1, 6.6, 8.1 | Dedekind domain |
Apr. 10 | 8.2-8.3 | integral and fractional ideals, divisibilty of integral ideals |
Apr. 12 | 8.3 | unique factorization of ideals |
Apr. 14 | B8, 8.4 | Chinese Remainder Theorem |
Apr. 17 | 8.4,10.1 | prime lying above p, prime lying below P |
Apr. 19 | 9.1, 9.2, 9.3 | norm of an ideal, norm of an element, trace of an element |
Apr. 21 | 10.1 | inertial degree |
Apr. 24 | 10.1, 10.2 | |
Apr. 26 | 10.2, 10.6, 11.2 | Kronecker symbol |
Apr. 28 | 11.2, B31 | Pell Equation |
May 1 | 11.5, 7.5, Jarvis 9.1-9.2 | cyclotomic fields |
May 3 | 12.1, | ideal class group, class number |
May 5 | Jarvis 7.1 | lattice, fundamental region, complete, centrally symmetric, convex |
May 8 | Jarvis 7.2 | real and complex embeddings |
May 10 | Jarvis 7.3 | |
May 12 | some ideas towards proof of Fermat's Last Theorem |