1. Let K be an algebraic number field and $\alpha \in K$. Let β be a conjugate of α relative to K.
(a) Prove that $D(\alpha)=D(\beta)$.
(b) Prove that $\operatorname{fld}_{K}(\alpha)=\operatorname{fld}_{K}(\beta)$.
(c) Prove that if $\gamma \in K$ so that $\operatorname{fld}_{K}(\alpha)=\operatorname{fld}_{K}(\gamma)$ then α and γ are conjugates relative to K.
2. (a) Prove that $\mathbb{Z}+\mathbb{Z} \sqrt{3}+\mathbb{Z} \sqrt{7}+\mathbb{Z} \sqrt{21}$ is not the ring of integers of $\mathbb{Q}(\sqrt{3}, \sqrt{7})$.
(b) Compute integral basis and discriminant of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
3. (From class) Let D be an integral domain and I an ideal of D with K the quotient field of D. (a) For any $a \in I$ define $J:=\frac{1}{a} \cdot I=\left\{\left.\frac{1}{a} \cdot x \right\rvert\, x \in I\right\} \subseteq K$. Prove that $I \subseteq J$ and if $J \subseteq D$ then J is an ideal of D.
(b) For all $d \in D$ prove that $\langle d\rangle \cdot I=\{d \cdot x \mid x \in I\}$.
4. Prove that a Dedekind domain D is a UFD if and only if it is a PID.
5. Let I and J be nonzero ideals of a Dedekind domain D. See Purple book Chapter 8 problem \#12 for definition of the greatest common divisor and least common multiple of ideals in a Dedekind domain.
(a) Prove that $\operatorname{gcd}(I, J)=I+J$.
(b) Prove that $\operatorname{lcm}(I, J)=I \cap J$.
6. Let $I=\langle 2,1+\sqrt{-3}\rangle$ in $\mathbb{Z}+\mathbb{Z} \sqrt{-3}$.
(a) Show that $I \neq\langle 2\rangle$.
(b) Show that $I^{2}=\langle 2\rangle \cdot I$.
(c) Explain what this tells us about unique factorization in $\mathbb{Z}+\mathbb{Z} \sqrt{-3}$.
(This is more evidence that $\mathbb{Z}+\mathbb{Z} \sqrt{-3}$ should not be the ring of integers of O_{K}.)
