- 1. Let K be an algebraic number field and $\alpha \in K$. Let β be a conjugate of α relative to K.
 - (a) Prove that $D(\alpha) = D(\beta)$.
 - (b) Prove that $\operatorname{fld}_K(\alpha) = \operatorname{fld}_K(\beta)$.
 - (c) Prove that if $\gamma \in K$ so that $\operatorname{fld}_K(\alpha) = \operatorname{fld}_K(\gamma)$ then α and γ are conjugates relative to K.
- 2. (a) Prove that Z + Z√3 + Z√7 + Z√21 is not the ring of integers of Q(√3, √7).
 (b) Compute integral basis and discriminant of Q(√2, √3)
- 3. (From class) Let D be an integral domain and I an ideal of D with K the quotient field of D.
 (a) For any a ∈ I define J := ¹/_a · I = {¹/_a · x | x ∈ I} ⊆ K. Prove that I ⊆ J and if J ⊆ D then J is an ideal of D.
 - (b) For all $d \in D$ prove that $\langle d \rangle \cdot I = \{ d \cdot x \mid x \in I \}.$
- 4. Prove that a Dedekind domain D is a UFD if and only if it is a PID.
- 5. Let I and J be nonzero ideals of a Dedekind domain D. See Purple book Chapter 8 problem #12 for definition of the greatest common divisor and least common multiple of ideals in a Dedekind domain.
 - (a) Prove that gcd(I, J) = I + J.
 - (b) Prove that $lcm(I, J) = I \cap J$.
- 6. Let $I = \langle 2, 1 + \sqrt{-3} \rangle$ in $\mathbb{Z} + \mathbb{Z}\sqrt{-3}$.
 - (a) Show that $I \neq \langle 2 \rangle$.
 - (b) Show that $I^2 = \langle 2 \rangle \cdot I$.
 - (c) Explain what this tells us about unique factorization in $\mathbb{Z} + \mathbb{Z}\sqrt{-3}$.
 - (This is more evidence that $\mathbb{Z} + \mathbb{Z}\sqrt{-3}$ should not be the ring of integers of O_{K} .)