- 1. Let $F \subseteq K \subseteq L$ be fields. Prove that [L:F] = [L:K][K:F].
- 2. (a) Prove that if p > 2 is a prime and $\omega_p = e^{\frac{2\pi i}{p}}$ then $K = \mathbb{Q}(\omega_p + \omega_p^{-1})$ is an extension of \mathbb{Q} of degree $\frac{p-1}{2}$.
 - (b) Prove that K is a subfield of \mathbb{R} . This field is called the maximal real subfield of $\mathbb{Q}(\omega_p)$.
- 3. Find the conjugates of $\cos(2\pi/5)$. (It might help to read up on the cosine function in complex analysis.)
- 4. Prove that $\mathbb{Q}(\sqrt{2}, i\sqrt{2}) = \mathbb{Q}(\sqrt{2} + i\sqrt{2}).$
- 5. Let $\alpha = a + bi \in \mathbb{C}$ be an algebraic number (so $a, b \in \mathbb{R}$).
 - (a) Must a and b be algebraic numbers?
 - (b) If α is additionally an algebraic integer must a and b be algebraic integers?
- 6. Suppose $m \in \mathbb{Z}$ is squarefree.
 - (a) What is the field of fractions of $\mathbb{Z} + \mathbb{Z}\sqrt{m}$?
 - (b) If also $m \equiv 1 \mod 4$, prove that $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is not integrally closed (see definition 4.2.2).
- 7. Magma. It turns out that Magma can easily compute minimal polynomials. If you create the field K(a) (like on last week's homework), it can determine the minimal polynomial of any $b \in K(a)$ using the command MinimalPolynomial(b).

(a) Write a short program to find the minimal polynomial over \mathbb{Q} of the elements $\omega_p + \omega_p^{-1}$ for any prime p. (I do not need to see a log for all your test cases of this program.)

(b) Run your program on the first 20 primes greater than 3. Be sure to log all your output from this.