1. Let $F \subseteq K \subseteq L$ be fields. Prove that $[L: F]=[L: K][K: F]$.
2. (a) Prove that if $p>2$ is a prime and $\omega_{p}=e^{\frac{2 \pi i}{p}}$ then $K=\mathbb{Q}\left(\omega_{p}+\omega_{p}^{-1}\right)$ is an extension of \mathbb{Q} of degree $\frac{p-1}{2}$.
(b) Prove that K is a subfield of \mathbb{R}. This field is called the maximal real subfield of $\mathbb{Q}\left(\omega_{p}\right)$.
3. Find the conjugates of $\cos (2 \pi / 5)$. (It might help to read up on the cosine function in complex analysis.)
4. Prove that $\mathbb{Q}(\sqrt{2}, i \sqrt{2})=\mathbb{Q}(\sqrt{2}+i \sqrt{2})$.
5. Let $\alpha=a+b i \in \mathbb{C}$ be an algebraic number (so $a, b \in \mathbb{R}$).
(a) Must a and b be algebraic numbers?
(b) If α is additionally an algebraic integer must a and b be algebraic integers?
6. Suppose $m \in \mathbb{Z}$ is squarefree.
(a) What is the field of fractions of $\mathbb{Z}+\mathbb{Z} \sqrt{m}$?
(b) If also $m \equiv 1 \bmod 4$, prove that $\mathbb{Z}+\mathbb{Z} \sqrt{m}$ is not integrally closed (see definition 4.2.2).
7. Magma. It turns out that Magma can easily compute minimal polynomials. If you create the field $K(a)$ (like on last week's homework), it can determine the minimial polynomial of any $b \in K(a)$ using the command MinimalPolynomial (b).
(a) Write a short program to find the minimal polynomial over \mathbb{Q} of the elements $\omega_{p}+\omega_{p}^{-1}$ for any prime p. (I do not need to see a log for all your test cases of this program.)
(b) Run your program on the first 20 primes greater than 3 . Be sure to \log all your output from this.
