- 1. Find an example of UFD D where some $a \in D$ is irreducible but $\langle a \rangle$ is not maximal.
- 2. Prove that the ring of all continuous real valued functions on [0,1] is not Noetherian by exhibiting an explicit infinite ascending chain of ideals.
- 3. (a) Prove that if R is a Noetherian ring, and I is an ideal in R, then R/I is a Noetherian ring.
 (b) Prove the converse of Hilbert's basis theorem: If the polynomial ring R[x] is a Noetherian ring then R is a Noetherian ring.
- 4. Call a vector space V Noetherian if every ascending chain of subspaces of V terminates. Prove that \mathbb{R}^n is Noetherian for all positive integers n.
- 5. Let M be an R-module and N a submodule of M.
 - (1) If M_1 is another submodule of M, show that $M_1 \cap N$ is a submodule of N.

(2) If M_1 is another submodule of M, show that $\overline{M_1} := \{m + N \in M/N \mid m \in M_1\}$ is a submodule of M/N.

(3) If $\overline{M_1}$ is a submodule of M/N, show that $\{m \in M \mid m + N \in \overline{M_1}\}$ is a submodule of M.

- 6. Define a set Hom(M, N) to be the set of R-module homomorphisms from M to N.
 (a) Prove that this set is an abelian group under addition of homomorphism.
 (b) If R is also commutative, prove that the set of homomorphisms is an R module under the R-action (r ⋅ φ)(m) = r ⋅ (φ(m)) for all m ∈ M where φ(m) is a homomorphism from M to N.
- 7. Magma: Let m be an odd number, (a, m) = 1. Come up with a conjecture for the number of solutions to the congruence $x^2 \equiv a \mod m$. We only count solutions x in the set $\{0, 1, \ldots, m-1\}$ since, if x is a solution, anything congruent to $x \mod m$ is also a solution. You might want to consider the cases where m is a prime or a power of a prime first, then consider the factorization of m into primes.
- 8. Challenge: (We discussed part of (c) in class.) Let $R = \mathbb{Z} + x\mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
 - (a) Prove that R is an integral domain and its units are ± 1 .

(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) that are irreducible in $\mathbb{Q}[x]$ and have a constant term ± 1 . Prove that these irreducibles are prime in R.

(c) Show that x cannot be written as the product of irreducibles in R (in particular x is not irreducible) and conclude that R is not a UFD.

(d) Show that x is not a prime in R and describe the quotient ring $R/\langle x \rangle$.