Math 324 Spring 2017
Homework 4
Due: February 22, 2017

1. Find an example of UFD D where some $a \in D$ is irreducible but $\langle a\rangle$ is not maximal.
2. Prove that the ring of all continuous real valued functions on $[0,1]$ is not Noetherian by exhibiting an explicit infinite ascending chain of ideals.
3. (a) Prove that if R is a Noetherian ring, and I is an ideal in R, then R / I is a Noetherian ring.
(b) Prove the converse of Hilbert's basis theorem: If the polynomial ring $R[x]$ is a Noetherian ring then R is a Noetherian ring.
4. Call a vector space V Noetherian if every ascending chain of subspaces of V terminates. Prove that \mathbb{R}^{n} is Noetherian for all positive integers n.
5. Let M be an R-module and N a submodule of M.
(1) If M_{1} is another submodule of M, show that $M_{1} \cap N$ is a submodule of N.
(2) If M_{1} is another submodule of M, show that $\overline{M_{1}}:=\left\{m+N \in M / N \mid m \in M_{1}\right\}$ is a submodule of M / N.
(3) If $\overline{M_{1}}$ is a submodule of M / N, show that $\left\{m \in M \mid m+N \in \overline{M_{1}}\right\}$ is a submodule of M.
6. Define a set $\operatorname{Hom}(M, N)$ to be the set of R-module homomorphisms from M to N.
(a) Prove that this set is an abelian group under addition of homomorphism.
(b) If R is also commutative, prove that the set of homomorphisms is an R module under the R-action $(r \cdot \phi)(m)=r \cdot(\phi(m))$ for all $m \in M$ where $\phi(m)$ is a homomorphism from M to N.
7. Magma: Let m be an odd number, $(a, m)=1$. Come up with a conjecture for the number of solutions to the congruence $x^{2} \equiv a \bmod m$. We only count solutions x in the set $\{0,1, \ldots, m-$ $1\}$ since, if x is a solution, anything congruent to $x \bmod m$ is also a solution. You might want to consider the cases where m is a prime or a power of a prime first, then consider the factorization of m into primes.
8. Challenge: (We discussed part of (c) in class.) Let $R=\mathbb{Z}+x \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
(a) Prove that R is an integral domain and its units are ± 1.
(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials $f(x)$ that are irreducible in $\mathbb{Q}[x]$ and have a constant term ± 1. Prove that these irreducibles are prime in R.
(c) Show that x cannot be written as the product of irreducibles in R (in particular x is not irreducible) and conclude that R is not a UFD.
(d) Show that x is not a prime in R and describe the quotient ring $R /\langle x\rangle$.
