1. Let m be an integer with $m \equiv 1 \mod 4$ and m < -3. Prove that

$$U\left(\mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)\right) = \{\pm 1\}.$$

(Hint: Consider complex conjugates.)

- 2. (a) Prove that $\sqrt{10}$ is not a prime in $\mathbb{Z} + \mathbb{Z}\sqrt{10}$.
 - (b) Prove that $\sqrt{10}$ is irreducible in $\mathbb{Z} + \mathbb{Z}\sqrt{10}$.
 - (c) Prove that $\mathbb{Z} + \mathbb{Z}\sqrt{10}$ is not a PID.
 - (d) Give an example of an ideal in $\mathbb{Z} + \mathbb{Z}\sqrt{10}$ that is not principal.
- 3. Prove that the quotient of a Principal Ideal Domain by a prime ideal is again a Principal Ideal Domain.
- 4. (a) Is 2 a prime in Z + Zi? What about 5?
 (b) Prove that (2, 1 + √-5) and (3, 1 √-5) are prime ideals in Z + Z√-5.
- 5. Let D be the integral domain $\mathbb{Z} + \mathbb{Z}i$.
 - (a) Prove that for every $n \in \mathbb{Z}^+$ there are only a finite number of elements $\alpha \in D$ such that $\phi_{-1}(\alpha) \leq n$.
 - (b) Given a nonzero ideal $I = \langle a \rangle \in D$ prove that every coset of I is represented by an element of norm less than $\phi_{-1}(a)$.
 - (c) Prove that the quotient ring $(\mathbb{Z} + \mathbb{Z}i)/I$ is finite for any nonzero ideal I of $\mathbb{Z} + \mathbb{Z}i$.
- 6. For any commutative ring R with identity we define a *least common multiple* of two nonzero elements a and b in R to be an element c in R so that (i) $a \mid c$ and $b \mid c$ and (ii) if $a \mid d$ and $b \mid d$ then $c \mid d$.
 - For this problem, assume D is a Principal Ideal Domain.
 - (a) Prove that a least common multiple of a and $b \in D$ is a generator for the ideal $\langle a \rangle \cap \langle b \rangle$. (Hence any two nonzero elements of D have a least common multiple.)
 - (b) Prove that in a Euclidean Domain a least common multiple of a and b is $\frac{ab}{(a,b)}$.
- 7. Challenge: This problem is extra credit and not required. You will need to do some reading about a result called Zorn's Lemma. The goal is to prove that if D is an integral domain where every prime ideal is principal, then D is a PID.

(a) Assume the set of ideals of D that are not principal is nonempty and prove that this set has a maximal element under inclusion.

(b) Let I be an ideal which is maximal with respect to being nonprincipal and let $a, b \in D$ with $ab \in I$ but $a \notin I$ and $b \notin I$. Let $I_a = \langle I, a \rangle$ be the ideal generated by I and a and let $I_b = \langle I, b \rangle$ be the ideal generated by I and b, and define $J = \{r \in D \mid rI_a \subseteq I\}$. Prove that $I_a = \langle c \rangle$ and $J = \langle d \rangle$ are principal ideals in D with $I \subsetneq I_b \subseteq J$ and $I_aJ = \langle cd \rangle \subseteq I$.

- (c) If $x \in I$ show that x = sc for some $s \in J$. Deduce that $I = I_a J$ is principal.
- (d) Conclude that D is a PID.