1. Let m be an integer with $m \equiv 1 \bmod 4$ and $m<-3$. Prove that

$$
U\left(\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)\right)=\{ \pm 1\} .
$$

(Hint: Consider complex conjugates.)
2. (a) Prove that $\sqrt{10}$ is not a prime in $\mathbb{Z}+\mathbb{Z} \sqrt{10}$.
(b) Prove that $\sqrt{10}$ is irreducible in $\mathbb{Z}+\mathbb{Z} \sqrt{10}$.
(c) Prove that $\mathbb{Z}+\mathbb{Z} \sqrt{10}$ is not a PID.
(d) Give an example of an ideal in $\mathbb{Z}+\mathbb{Z} \sqrt{10}$ that is not principal.
3. Prove that the quotient of a Principal Ideal Domain by a prime ideal is again a Principal Ideal Domain.
4. (a) Is 2 a prime in $\mathbb{Z}+\mathbb{Z} i$? What about 5 ?
(b) Prove that $\langle 2,1+\sqrt{-5}\rangle$ and $\langle 3,1-\sqrt{-5}\rangle$ are prime ideals in $\mathbb{Z}+\mathbb{Z} \sqrt{-5}$.
5. Let D be the integral domain $\mathbb{Z}+\mathbb{Z} i$.
(a) Prove that for every $n \in \mathbb{Z}^{+}$there are only a finite number of elements $\alpha \in D$ such that $\phi_{-1}(\alpha) \leq n$.
(b) Given a nonzero ideal $I=\langle a\rangle \in D$ prove that every coset of I is represented by an element of norm less than $\phi_{-1}(a)$.
(c) Prove that the quotient ring $(\mathbb{Z}+\mathbb{Z} i) / I$ is finite for any nonzero ideal I of $\mathbb{Z}+\mathbb{Z} i$.
6. For any commutative ring R with identity we define a least common multiple of two nonzero elements a and b in R to be an element c in R so that (i) $a \mid c$ and $b \mid c$ and (ii) if $a \mid d$ and $b \mid d$ then $c \mid d$.

For this problem, assume D is a Principal Ideal Domain.
(a) Prove that a least common multiple of a and $b \in D$ is a generator for the ideal $\langle a\rangle \cap\langle b\rangle$. (Hence any two nonzero elements of D have a least common multiple.)
(b) Prove that in a Euclidean Domain a least common multiple of a and b is $\frac{a b}{(a, b)}$.
7. Challenge: This problem is extra credit and not required. You will need to do some reading about a result called Zorn's Lemma. The goal is to prove that if D is an integral domain where every prime ideal is principal, then D is a PID.
(a) Assume the set of ideals of D that are not principal is nonempty and prove that this set has a maximal element under inclusion.
(b) Let I be an ideal which is maximal with respect to being nonprincipal and let $a, b \in D$ with $a b \in I$ but $a \notin I$ and $b \notin I$. Let $I_{a}=\langle I, a\rangle$ be the ideal generated by I and a and let $I_{b}=\langle I, b\rangle$ be the ideal generated by I and b, and define $J=\left\{r \in D \mid r I_{a} \subseteq I\right\}$. Prove that $I_{a}=\langle c\rangle$ and $J=\langle d\rangle$ are principal ideals in D with $I \varsubsetneqq I_{b} \subseteq J$ and $I_{a} J=\langle c d\rangle \subseteq I$.
(c) If $x \in I$ show that $x=s c$ for some $s \in J$. Deduce that $I=I_{a} J$ is principal.
(d) Conclude that D is a PID.

