1. (a) Given a prime p, prove that if a has order 3 in $\mathbb{Z} / p \mathbb{Z}$ then $a^{2}+a+1 \equiv 0 \bmod p$.
(b) Generalize (a) to arbitrary order. Also, can we remove the assumption that p is prime?
2. Prove that every finite integral domain is a field.
3. Prove that, using notation from the Division Algorithm, $(a, b)=(b, r)$.
4. Let A and B be ideals of an integral domain D.
(a) Prove that $A \cap B$ is also an ideal of D.
(b) Prove that $A B \subseteq A \cap B$.
(c) Prove that $(A \cap B)(A+B) \subseteq A B$.
(d) Give an example to show that equality does not always hold in (c).
5. We say two ideals A and B in a ring R are comaximal if $A+B=R$. Prove that in a Principal Ideal Domain D, two ideals $\langle a\rangle$ and $\langle b\rangle$ are comaximal if and only if a greatest common divisor of a and b is the 1 in D.
6. (a) Let D be an integral domain. Let a, b, and $c \in D$ be such that $\langle a, c\rangle=D$. Prove that $\langle a, b c\rangle=\langle a, b\rangle$.
(b) In the special case where $D=\mathbb{Z}$, restate (a) in terms of gcd's and prove your restatement using elementary methods.
7. Find an integral domain without any irreducible elements.
8. Magma: Define $\left(\frac{a}{p}\right)$ to be 1 if $x^{2} \equiv a \bmod p$ has a non-zero solution $x,-1$ if $x^{2} \equiv a \bmod p$ does not have a solution x, and 0 if $a \mid p$. This symbol is called the Legendre Symbol and we will use it next week. The Magma command for this function is LegendreSymbol (a, p). Use Magma to formulate conjectures for the following problems.
(a) For any odd prime p, conjecture what the value of $\left(\frac{2}{p}\right)$ is.
(b) For any odd primes p and q, come up with a conjecture relating the values of $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$.
